
www.manaraa.com

J. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-

marling, A. McKenney, and D. Sorensen. La-

pack: A portable linear algebra library for high-

performance computers. In Proceedings of Super-

computing '90, pages 1{10. IEEE Press, 1990.

[2] E. Anderson, Z. Bai, J. Demmel, J. Dongarra,

J. DuCroz, A. Greenbaum, S. Hammarling,

A. McKenney, S. Ostrouchov, and D. Sorensen.

LAPACK Users' Guide. SIAM Press, Philadel-

phia, PA, 1992.

[3] E. Anderson, A. Benzoni, J. Dongarra, S. Moul-

ton, S. Ostrouchov, B. Tourancheau, and

R. van de Geijn. LAPACK for distributed mem-

ory architectures: Progress report. In Parallel

Processing for Scienti�c Computing, Fifth SIAM

Conference. SIAM, 1991.

[4] C. C. Ashcraft. The distributed solution of lin-

ear systems using the torus wrap data mapping.

Engineering Computing and Analysis Technical

Report ECA-TR-147, Boeing Computer Services,

1990.

[5] C. C. Ashcraft. A taxonamy of distributed dense

LU factorization methods. Engineering Comput-

ing and Analysis Technical Report ECA-TR-161,

Boeing Computer Services, 1991.

[6] R. Brent. The LINPACK benchmark on the AP

1000: Preliminary report. In Proceedings of the

2nd CAP Workshop, NOV 1991.

[7] J. Choi, J. J. Dongarra, and D. W. Walker. The

design of distributed level 3 BLAS routines, 1992.

in preparation.

[8] E. F. Van de Velde. Data redistribution and

concurrency. Parallel Computing, 16, December

1990.

[9] J. Demmel, J. J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, and D. Sorensen.

Prospectus for the development of a linear al-

gebra library for high performance computers.

Technical Report 97, Argonne National Labora-

tory, Mathematics and Computer Science Divi-

sion, September 1987.

[10] J. Dongarra and S. Ostrouchov. LAPACK block

factorization algorithms on the Intel iPSC/860.

Technical Report CS-90-115, University of Ten-

nessee at Knoxville, Computer Science Depart-

ment, October 1990.

[11] J. J. Dongarra, J. Du Croz, S. Hammarling, and

I. Du�. A set of level 3 basic linear algebra sub-

programs. ACM Transactions on Mathematical

Software, 16(1):1{17, 1990.

[12] J. J. Dongarra, R. van de Geijn, and D. W.

Walker. A look at scalable dense linear algebra

libraries. In J. H. Saltz, editor, Proceedings of

the 1992 Scalable High Performance Computing

Comference. IEEE Press, 1992.

[13] J.J. Dongarra. Workshop on the BLACS. LA-

PACK Working Note 34, Technical Report CS-

91-134, University of Tennessee, 1991.

[14] J.J. Dongarra and R.A. van de Geijn. Reduc-

tion to condensed form for the eigenvalue problem

on distributed memory architectures. LAPACK

Working Note 30, Technical Report CS-91-130,

University of Tennessee, 1991. To appear in Par-

allel Computing.

[15] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,

U. Kremer, C-W. Tseng, and M-Y. Wu. For-

tran D language speci�cation. Technical Report

CRPC-TR90079, Center for Research on Parallel

Computation, Rice University, December 1990.

[16] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W.

Otto, J. K. Salmon, and D. W. Walker. Solving

Problems on Concurrent Processors, volume 1.

Prentice Hall, Englewood Cli�s, N.J., 1988.

[17] A. Gupta and V. Kumar. The scalability of �t

on parallel computers. Technical report, Depart-

ment of Computer Science, University of Min-

nesota, September 1990.

[18] Y. Saad and M. H. Schultz. Parallel direct meth-

ods for solving banded linear systems. Techni-

cal Report YALEU/DCS/RR-387, Department

of Computer Science, Yale University, 1985.

[19] A. Skjellum and A. Leung. LU factorization of

sparse, unsymmetric, Jacobian matrices on multi-

computers. In D.W.Walker and Q. F. Stout, edi-

tors, Proceedings of the Fifth Distributed Memory

Concurrent Computing Comference, pages 328{

337. IEEE Press, 1990.

[20] R.A. van de Geijn. Massively parallel LINPACK

benchmark on the Intel Touchstone Delta and

iPSC/860 systems. Computer Science report TR-

91-28, Univ. of Texas, 1991.

www.manaraa.com

0 4000 8000 12000 16000 20000 24000 28000
0

2

4

6

8

10

12

2 × 16
4 × 16

4 × 32

8 × 32

8 × 64

Matrix Size, M

G
fl

op
/s

Figure 4: Performance in giga
op/s as a function of

matrix size for di�erent numbers of processors.

6 Conclusions

In developing the ScaLAPACK library for perform-

ing dense and banded matrix computations on dis-

tributed memory concurrent computers three key de-

sign decisions have been made.

1. Distributed versions of the Level 3 BLAS are

used as building blocks, and all interprocessor

communication is hidden within these routines.

Above the level of the Level 3 BLAS most of

the ScaLAPACK code is identical to that of the

corresponding LAPACK code for sequential and

shared memory machines. By formulating com-

putations in terms of Level 3 BLAS routines the

number of messages, and hence the communica-

tion latency, is reduced.

2. The square block scattered decomposition scheme

is used to distribute the data. This is simple,

but su�ciently general-purpose for most applica-

tions. An SBS decomposition is parameterized by

the block size, r, and the number of processors,

P and Q, in each direction of the processor tem-

plate. If desired, the user can experiment with

these parameters to optimize an application on a

particular machine.

3. An object-based interface to the ScaLAPACK

routines will make the library easier to use. Once

the data decomposition has been speci�ed the

user does not need to refer to it again when call

ScaLAPACK routines.

0 100 200 300 400 500 600
0

2

4

6

8

10

12
1.221

 0.195

 0.096

 0.500

Number of Processors

G
fl

op
/s

Figure 5: Isogranularity curves in the (G;N

p

) plane.

The curves are labeled by the granularity g in units of

10

6

.

A distributed LU factorization algorithm that uses

the distributed Level 3 BLAS routines and an SBS de-

composition has been implemented on the Intel Delta

system. The performance attained is comparable with

that obtained with hand-optimized code. Further-

more, our LU factorization algorithm exhibits good

scalabilty on the Delta system if more than about 15%

of each processors memory is utilized.

Future work will include further optimization of the

distributed LU factorization code. In particular, in

the panel factorization it may be possible to increase

the overlap of communication with computation by

pipelining columns of L across the processor template

as soon as they are evaluated, rather than pipelining

all of the panel across after factorizing it. We shall

also focus on completing the implementation of the

distributed Level 3 BLAS routines, and developing the

object-based interface to the ScaLAPACK routines.

Acknowledgements

This research was performed in part using the Intel

Touchstone Delta System operated by the California

Institute of Technology on behalf of the Concurrent

Supercomputing Consortium. Access to this facility

was provided through the Center for Research on Par-

allel Computing.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel,

www.manaraa.com

5 Results for the Distributed LU Fac-

torization Algorithm

In this section we present performance results for

an implementation of the distributed LU factoriza-

tion algorithm described above on the Intel Touch-

stone Delta system. The Delta system is a distributed

memory MIMD computer containing 520 i860-based

compute nodes connected via a two-dimensional com-

munication network. Initial experiments investigated

the optimal block size, r, and showed that over a wide

range of problem size and processor template con�gu-

rations a value of r = 5 is close to optimal. This is in

agreement with the earlier work of Van de Geijn. In

all of our subsequent experiments a block size of r = 5

was used.

We next consider how performance depends on

the con�guration of the processor template. For a

given number of processors an increase in the num-

ber of rows, P , in the processor template decreases

the amount of computation per processor in the panel

factorization, but increases it in the triangular solve

phase. Thus, if the communication time were negli-

gible the optimal aspect ratio, P=Q, of the processor

template would equal the ratio of the sequential com-

putation times of the panel factorization and trian-

gular solve phases. The actual optimal aspect ratio

depends on the communciation characteristics of the

hardware, and the extent to which communication can

be overlapped with computation. We measured the

performance for a number of di�erent processor tem-

plate con�gurations and problem sizes and found that

an aspect ratio, P=Q, of between 1/4 and 1/8 to be

optimal, and that performance depends rather weakly

upon the aspect ratio, particularly at large grain sizes.

Some typical results are shown in Fig. 3 for 256 pro-

cessors, which shows a variation of less than 20% in

performance as P=Q varies between 1/16 and 1. Mea-

sured times were converted to giga
op/s by assuming

an operation count of 2M

3

=3.

Fig. 4 shows the performance as a function of prob-

lem size for di�ering numbers of nodes. In all cases

the block size is r = 5, and we plot results for the pro-

cessor template that gave the best performance for a

given number of processors. The highest performance

of 11.8G
op/s was attained for a 8�64 processor tem-

plate and a matrix size of N = 26000. This is close

to the value of 14 G
op/s reached by van de Geijn's

implementation, and we expect to be able to optimize

our implementation further.

The results in Fig. 4 can be used to assess the scal-

ability of our distributed block LU factorization algo-

0 3000 6000 9000 12000 15000 18000
0

1

2

3

4

5

6

Matrix Size, M

G
fl

op
/s

4 × 64
8 × 32

12 × 21
16 × 16

Figure 3: Performance in giga
op/s as a function of

matrix size for di�erent processor templates contain-

ing approximately equal numbers of processors.

rithm. In general one would expect the concurrent

e�ciency of a given algoritm on a given machine to

depend on the problem size, N, and the number of

processors used, N

p

. Thus,

�(N;N

p

) =

1

N

p

T

1

(N)

T (N;N

p

)

(3)

where T (x; y) is the time for a problem of size x to run

on y processors, T

1

(x) is the time to run on one proces-

sor using the best sequential algorithm. An algorithm

is perfectly scalable if the concurrent e�ciency de-

pends only on the grain size, g, and not independently

on N and N

p

. The e�ciency could be investigated by

plotting isoe�ciency curves in the (N

p

; N) plane [17].

For a highly scalable algorithm these curves would be

straight lines. A more useful approach is to look at

how the performance per processor degrades as the

number of processors increases for a �xed grain size,

i.e., by plotting isogranularity curves in the (N

p

; G)

plane, where G is the performance in giga
op/s. Since

G /

T

1

(N)

T (N;N

p

)

= N

p

�(N;N

p

) (4)

scalability can readily be assessed by the extent to

which the isogranularity curves di�er from linearity.

The data in Fig. 4 can be used to generate the iso-

granularity curves shown in Fig. 5 which show that on

the Delta system the scalability starts to degrade for

granularity g < 0:195� 10

6

. Since g = M

2

=N

p

, this

corresponds to a matrix size of M = 10000 on 512

processors.

www.manaraa.com

4 Parallel LU Factorization

The ScaLAPACK library is built using three types

of routine; (1) distributed versions of the Level 3

BLAS, (2) the LACS, and (3) assembly coded routines

for performing common sequential Level 3 BLAS oper-

ations, and tasks such as bu�er copying. All commu-

nication in a ScaLAPACK library routine is performed

within the distributed Level 3 BLAS, and so the user

is isolated from the details of the parallel implemen-

tation. An important consequence of this is that the

source code of the higher level routines, for example for

the LU, QR, and Cholesky factorizations, is identical

in the ScaLAPACK and LAPACK libraries. LU fac-

torization involves calls to the Level 3 BLAS routines

DGEMM, for performing the matrix multiplication,

and DTRSM, for solving the triangular systems. De-

tails of the distributed implementation of these Level

3 BLAS routines is given in [7]. In the LAPACK ver-

sion of the right-looking LU factorization algorithm

DGEMM and DTRSM are used to apply a rank-r up-

date to the trailing submatrix, and to perform the

lower triangular solve necessary to form the block rows

of U , the upper triangular matrix obtained by the fac-

torization. We have implemented a distributed LU

factorization routine that makes use of SBS data dis-

tribution and the distributed Level 3 BLAS routines,

and are in the process of incorporating a object-based

interface. The distributed LU factorization algorithm

is similar to that implemented on the Intel iPSC/860

and Delta multicomputers by van de Geijn [12]. Given

a square matrix, A, ofM

b

�M

b

blocks, each consisting

of r� r elements, the algorithm generates the factor-

ization A = LU in M

b

steps, where U is an upper

triangular matrix and L is a lower triangular matrix

with 1's on the diagonal. The algorithm is readily

extended to the case of nonsquare matrices. After k

steps the �rst kr columns of L and the �rst kr rows

of U have been evaluated, and the matrix A has been

updated to the form shown in Fig. 2 in which panel

B is (M

b

� k) � 1 blocks, and C is 1 � (M

b

� k � 1)

blocks. The next step procedes as follows,

1. factor B to form the next panel of L, perform-

ing partial pivoting over rows if necessary. This

evaluates the matrices L

0

, L

1

, and U

0

in Fig. 2.

2. solve the triangular system L

0

U

1

= C to get the

next row of blocks of U

3. do a rank-r update on the trailing submatrix E,

replacing it with E

0

= E � L

1

U

1

.

In general, each of these three phases involves inter-

processor communication. When factoring B only the

L

U

B

C

E

L

U

E’L1

U1L0
U0

Figure 2: Schematic diagram showing how the column

of blocks B, the row of blocks C, and the trailing

submatrix E, are updated in one step of the blocked

version of LU factorization.

P processors in a single column of the processor tem-

plate are involved in the computation, giving rise to

load imbalance. For each of the r columns in turn the

pivot is found by �rst having each processor locate a

pivot candidate. We can regard the r elements in the

panel row containing the pivot candidate and the in-

dex labeling that row as comprising a data structure,

D, of r + 1 numbers. Each processor's version of D

is input to a logarithmic algorithm that selects the

pivot. After this each of the P processors involved in

selecting the pivot knows the index of the pivot row,

I

piv

, and the values of the r elements in the panel

row containing the pivot (this is the �rst row of U

0

in

Fig. 2). The index of the pivot row is pipelined across

the processor template, and the other processors per-

form the pivoting. While this is going on, the P panel

processors complete the pivoting within the panel by

overwriting row I

piv

of B by the �rst row. Since all

the panel processors already contain the pivot row, the

trailing submatrix part of B can be updated with no

further communication. Note how the communication

of the pivot location to the other processors, and the

pivoting by these processors, is performed while the

panel processors are working on the panel factoriza-

tion. Thus, it is not true to say that the other proces-

sors are completely idle during the panel factorization.

Finally the panel processors pivot the blocks that they

contain lying outside the panel.

To create a matrix the decomposition must �rst be

speci�ed. A routine is After factoring B, the panel

is pipelined across the processor template. The Q

processors containing the horizontal panel C can then

solve the lower triangular system L

0

U

1

= C to �nd U

1

which is then broadcast down the columns of the tem-

plate using a spanning tree algorithm. Each processor

then performs the rank-r update with no further com-

munication being required.

www.manaraa.com

MATRIX {
MATRIX_DATA_PART_PTR {

type *matrix_elements; % pointer to the matrix element values
int MG_elements; % total number of rows in matrix
int NG_elements; % total number of columns in matrix
int MG_blocks; % total number of rows of r by r blocks in matrix
int NG_blocks; % total number of columns of r by r blocks in matrix
int M_blocks; % number of rows of r by r blocks in each processor
int N_blocks; % number of columns of r by r blocks in each processor
int row_temp_offset; % the template row containing the first matrix block
int col_temp_offset; % the template column containing the first matrix block
int *pivot_sequence; % storage for the sequence of pivot rows

}
DECOMPOSITION_PART_PTR {

int r; % the block size
int P; % the number of rows of processors in the template
int Q; % the number of columns of processors in the template
int LCM; % the lowest common multiple of P and Q
int LCMP; % the number of rows of templates in an LCM block
int LCMQ; % the number of columns of templates in an LCM block
int left_proc; % the ID number of the processor to the left in the template
int right_proc; % the ID number of the processor to the right in the template
int below_proc; % the ID number of the processor below in the template
int above_proc: % the ID number of the processor above in the template

}
STORAGE_PART_PTR {

int elements_by_col; % indicates if blocks are stored by column or row
int blocks_by_col; % indicates if elements in block are stored by column or row
int row_e_offset; % offset between successive elements in same row
int col_e_offset; % offset between successive eleemnts in same column
int row_b_offset; % offset between start of successive blocks in same row
int col_b_offset; % offset between start of successive blocks in same column

}
}

Figure 1: The matrix object data structure in a C-like pseudocode. The matrix object consists of three pointers;

one to each of the matrix data, decomposition, and storage parts, the contents of which are as shown. The data

type of the matrix elements may be real, complex, double precision real, or double precision complex.

second method is used to create a submatrix of an ex-

isting matrix. In this case, we specify the start and

extent of the submatrix, which then inherits the de-

composition and storage parts from its parent matrix.

In the discussion so far it has been assumed that the

matrix elements have been assigned values, either in

some previous computational phase, or by reading in

values from disk. As a convenience, we supply a third

matrix creation method that generates a random ma-

trix. This is done by a subroutine that takes as in-

put a random number seed, the size of the matrix,

and pointers to previously created decomposition and

storage part data structures. The subroutine allocates

storage for the randommatrix, and returns the matrix

object. A leap-frog method [16] is used to generate the

random numbers, so for a given matrix size and seed

the matrix is the same for all processor templates.

The subroutines that specify the decomposition and

storage only assign values in these data structures.

They do not change the decomposition. We call these

assignment subroutines. Another set of inquiry sub-

routines may be used to extract information from the

matrix data structure. These inquiry routines might

be used by an application programmer wishing to

perform some task for which there is no appropri-

ate library routine, or by someone wanting to extend

ScaLAPACK. A set of Linear Algebra Communica-

tion Subroutines (LACS) may be used to transform

the decomposition of a matrix [13].

www.manaraa.com

P � Q processor grid, or template, over the matrix,

where each cell of the grid covers r � s data items,

and is labeled by its position in the template. The

block and scattered decompositions may be regarded

as special cases of the block scattered decomposition.

In general, the scattered blocks are rectangular, how-

ever, the use of nonsquare blocks can lead to com-

plications, and additional concurrent overhead. We,

therefore, propose to restrict ourselves to the square

block scattered (SBS) class of decompositions. The

column and row decompositions can still be recovered

by setting P = 1 or Q = 1. However, decompositions

for which r 6= s, P 6= Q, and neither P nor Q is 1,

cannot be reproduced by a SBS decomposition. These

types of decomposition are not often used in matrix

computations.

The SBS decomposition scheme is practical and suf-

�ciently general-purpose for most, if not all, dense

linear algebra computations. Furthermore, in prob-

lems, such as LU factorization, in which rows and/or

columns are eliminated in successive steps, the SBS

decomposition enhances scalability by ensuring statis-

tical load balance.

So far we have only considered how to map matrix

elements onto the processor template. In decompos-

ing a problem we must also specify how locations in

the processor template are mapped to physical pro-

cessors. On most current multicomputers the cost of

communicating between any two processors is weakly

dependent on their separation in the topology of the

communication network. Hence the choice of mapping

should not impact performance very much. ScaLA-

PACK supports the natural and Gray code mappings,

as well as any mapping function supplied by the ap-

plication programmer.

3 An Object-Oriented Library Inter-

face

In ScaLAPACK matrices are objects. In other

words, a matrix is a data structure containing infor-

mation that completely describes the matrix, and its

decomposition. The matrix object consists of three

parts; a matrix data part, a decomposition part, and

a storage part. The matrix data part is a pointer to

a data structure that contains a pointer to the start

of the matrix element values for a processor, together

with data about the size of the matrix, and the po-

sition in the processor mesh of the �rst block in the

distributed matrix. Another pointer speci�es the stor-

age for the pivot sequence, such as might be generated

by partial pivoting in LU decomposition. The decom-

position part is a pointer to a data structure giving

the square block size, r, the number of rows, P , and

columns, Q, in the processor mesh (or template), and

the least common multiple of P and Q. The impor-

tance of this later quantity will become evident when

we discuss the distributed matrix multiplication algo-

rithm in Sec. 4. In addition, the decomposition part

data structure contains the ID numbers of the four

neighboring processors in the processor mesh. The

storage part is a pointer to a structure that speci�es

how the matrix data are stored in each processor. For

example, whether the data in each block are stored

by columns or rows, and whether the blocks in each

processor are stored by columns or rows. The mem-

ory o�sets in matrix elements between an element and

the next element in the same row, and the next ele-

ment in the same column are also contained in this

data structure, together with the memory o�sets be-

tween corresponding elements in adjacent blocks. The

speci�cations of the matrix object are given in Fig. 1.

As our research progresses we expect to make further

changes in the content of the matrix object data struc-

ture. We intend to use Fortran 90 to implement this

object-based interface, and are investigating the use

of preprocessors that will allow us to develop a truly

object-oriented library interface.

To create a matrix the decomposition must �rst be

speci�ed. A routine is called that returns a pointer

to a DECOMPOSITION PART data structure. The val-

ues of the block size, the size of the processor tem-

plate, and the ID numbers of the neighboring pro-

cessors in the template are then �lled in by a series

of subroutine calls. A �nal subroutine call to eval-

uate the least common multiple of P and Q, and

associated quantities, completes the creation of the

DECOMPOSITION PART data structure. A similar pro-

cedure is followed to create the STORAGE PART data

structure. Once the decomposition part has been cre-

ated a subroutine is called to align the matrix with the

decomposition. This involves specifying the location

in the template that contains the �rst block in the ma-

trix. Another subroutine call is used to associate the

previously created STORAGE PART data structure with

the matrix. A �nal subroutine call instantiates the

matrix, and �lls in the rest of the MATRIX DATA PART

data structure.

There are currently three other ways of creating

matrices. In the �rst method, we specify that some

matrix, B, has the same decomposition and storage

parts as some previously created matrix, A, and then

alignmatrixB with the decomposition, as before. The

www.manaraa.com

access to stable systems.

2 Square Block Scattered Data De-

composition

The layout of an application's data within the hier-

archical memory of a concurrent computer is critical

in determining the performance and scalability of the

parallel code. On shared memory concurrent com-

puters (or multiprocessors) the software package LA-

PACK [1,9] seeks to make e�cient use of the hierarchi-

cal memory by maximizing data reuse, i.e., on a cache-

based computer by avoiding having to reload the cache

too frequently. LAPACK does this by casting lin-

ear algebra computations in terms of block-oriented,

matrix-matrix operations known as the Level 3 BLAS

[11] whenever possible. This approach generally re-

sults in maximizing the ratio of
oating point opera-

tions to memory references, and reuses data as much

as possible while it is stored in the highest levels of

the memory hierarchy (for example, vector registers,

or high-speed cache).

An analogous approach has been followed in the de-

sign of ScaLAPACK for distributed memorymachines.

By using block-partitioned algorithms we seek to re-

duce the frequency with which data must be trans-

ferred between processors, thereby reducing the �xed

startup cost (or latency) incurred each time a message

is communicated.

On a multicomputer the application programmer is

responsible for decomposing the data over the proces-

sors of the concurrent computer. A vector of length

M may be decomposed over some set of N

p

processors

by �rst arranging the processors in a linear sequence,

and then assigning the vector entry with global in-

dex m (where 0 � m < M) to the pth processor in

the sequence (0 � p < N

p

), where it is stored as the

ith entry in a local array. Thus the decomposition of

a vector can be regarded as a mapping of the global

index, m, to an index pair, (p; i), specifying the pro-

cessor location and the local index.

For matrix problems one can think of arranging the

processors as a P by Q grid. Thus the grid consists

of P rows of processors and Q columns of processors,

and N

p

= PQ. Each processor can be uniquely identi-

�ed by its position, (p; q), on the processor grid. The

decomposition of an M � N matrix can be regarded

as the tensor product of two vector decompositions,

� and �. The mapping � decomposes the M rows

of the matrix over the P rows of processors, and �

decomposes the N columns of the matrix over the Q

columns of processors. Thus, if �(m) = (p; i) and

�(n) = (q; j) then the matrix entry with global index

(m;n) is assigned to the processor at position (p; q) on

the processor grid, where it is stored in a local array

with index (i; j).

Two common decompositions are the block and the

scattered decompositions [8,16]. The block decomposi-

tion, �, assigns contiguous entries in the global vector

to the processors in blocks.

�(m) = (bm=Lc ;m mod L) ; (1)

where L = dM=P e. The scattered decomposition, �,

assigns consecutive entries in the global vector to dif-

ferent processors,

�(m) = (m mod P; bm=P c) (2)

By applying the block and scattered decomposi-

tions over rows and columns a variety of matrix de-

compositions can be generated. The block scattered

decomposition scatters blocks of r elements over the

processors instead of single elements, and if the blocks

are rectangular, is able to reproduce the decomposi-

tions resulting from all possible block and scattered

decompositions. Thus, by using the block scattered

decomposition a large degree of decomposition inde-

pendence can be attained. In the block scattered de-

composition the mapping of the global index, m, can

be expressed as a triplet of values, �(m) = (p; t; i),

where p is the processor position, t the block number,

and i the local index within the block. For the block

scattered decomposition we may write,

�

r

(m) =

�

m mod T

r

;

j

m

T

k

;

�

m mod T

�

mod r

(3)

where T = rP . It should be noted that this reverts

to the scattered decomposition when r = 1, with local

block index i = 0. A block decomposition is recov-

ered when r = L, with block number t = 0. The

block scattered decomposition in one form or another

has previously been used by Saad and Schultz [18],

Skjellum and Leung [19], Dongarra and Ostrouchov

[10], Anderson et al. [3], Ashcraft [4,5], Dongarra and

van de Geijn [14], van de Geijn [20], and Brent [6],

to name a few. The block scattered decomposition is

one of the decompositions provided in the Fortran D

programming style [15].

As discussed above, the block scattered decompo-

sition of a matrix can be regarded as the tensor prod-

uct of two block scattered decompositions, �

r

and �

s

.

This results in scattered blocks of size r � s. We can

view the block scattered decomposition as stamping a

www.manaraa.com

Sca : Scala le inear l e ra i rar for istri te

e or onc rrent o ters

�

Jaeyoun oi

x

, Jac J. on arra

x

, o an ozo , an avi . a er

x

x

a i e ationa a oratory niversity o ennessee

at e atica ciences ection e art ent o o uter cience

. . o , . yres a

a i e, - no vi e, -

A st ct

This paper describes ScaLAPACK, a distributed

memory version of the LAPACK software package for

dense and banded matrix computations. Key design

features are the use of distributed versions of the Level

LAS as building blocks, and an ob ect-based inter-

face to the library routines. The square block scat-

tered decomposition is described. The implementation

of a distributed memory version of the right-looking

LU factorization algorithm on the Intel Delta mul-

ticomputer is discussed, and performance results are

presented that demonstrated the scalability of the algo-

rithm.

Introduction

This paper describes the design and implementa-

tion of a library of subroutines for performing lin-

ear algebra computations on distributed memory con-

current computers (or multicomputers). When com-

pleted the library will contain subroutines for per-

forming dense, banded, and sparse matrix computa-

tions, with the latter being divided into the symmet-

ric, positive-de�nite, and nonsymmetric cases. In this

paper we focus on ScaLAPACK, a distributed mem-

ory version of the LAPACK [1,2] software package for

dense and banded matrix problems. Among the im-

portant design goals are scalability, portability,
exi-

bility, and ease-of-use. In the context of the current

work an algorithm is regarded as \scalable" if it con-

tinues to perform e�ciently the task for which it was

�

i i -

- - - i

- - -

designed as the number of processors increases, while

keeping the granularity �xed. The intent is that for

large scale problems the library routines should e�ec-

tively exploit the computational hardware of medium

grain-size multicomputers with up to a few thousand

processors, such as the Intel Paragon and Thinking

Machines Corporation's CM-5.

Scalability is largely determined by how the algo-

rithm interacts with the multicomputer hardware and

low-level software, and so reduces to an algorithm de-

sign issue, from our point of view. Issues such as load

balance, communication volume, and whether com-

munication and computation can be overlapped, all

impact the scalability of an algorithm and must be

carefully considered. The way in which the data are

distributed (or decomposed) over the processors of the

multicomputer is of fundamental importance to these

factors. We shall use the term \programmability" to

refer to factors such as portability,
exibility, and ease-

of-use. Programmability is largely determined by how

the user interacts with the software library. To en-

hance the programmability of the library we would

like details of the parallel implementation to be hid-

den as much as possible from the user, and so have

designed an object-based interface to the library. This

is described in Sec. 3. In addition, it is desirable

for the software to work correctly for a large class

of data decompositions. We have, therefore, adopted

the square block scattered (SBS) decomposition, de-

scribed in more detail in Sec. 2, for use in all our dis-

tributed dense linear algebra algorithms. In Sec. 4,

we describe a distributed right-looking variant of the

LU factorization algorithm. The scalability of the al-

gorithm is demonstrated in Sec. 5 by experiments on

the Intel Delta multicomputer. These experiments will

be extended to the Paragon and CM-5 once we have

